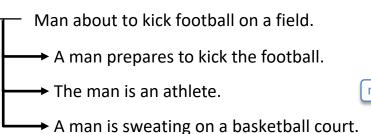


Enhanced Sentence Alignment Network for Efficient Short Text Matching


Zhe Hu¹, Zuohui Fu², Cheng Peng¹, and Weiwei Wang¹ ¹Baidu Inc ²Rutgers University

Text Matching

Paraphrase Detection

How do I know if my phone is tapped ? How does a landline call a cell phone ? How do I check if my phone is tapped ?

Natural Language Inference

duplicate

non-duplicate

Quora Dataset: <u>https://data.quora.com/First-Quora-Dataset-ReleaseQuestion-Pairs</u>

SNLI Dataset: Bowman, Samuel R., et al. "A large annotated corpus for learning natural language inference." arXiv preprint arXiv:1508.05326 (2015).

Current Methods on Text Matching

• Sentence Encoding Approach

• Sentence Interaction Approach

Current Methods on Text Matching

Sentence Encoding Approach

Sentence Interaction Approach

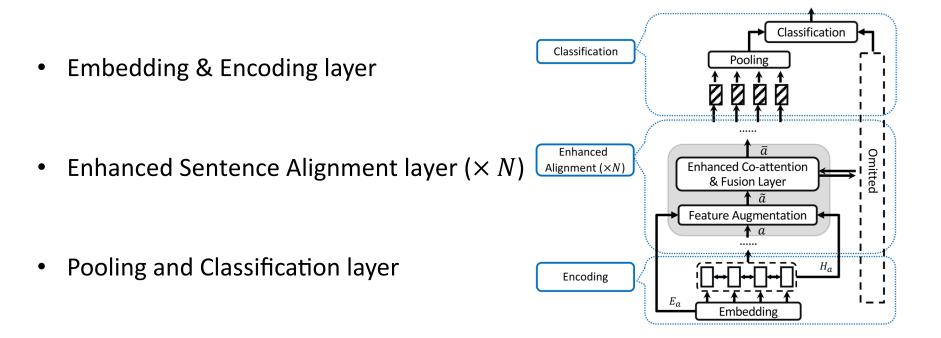
• Pre-trained LM 🧕 💇

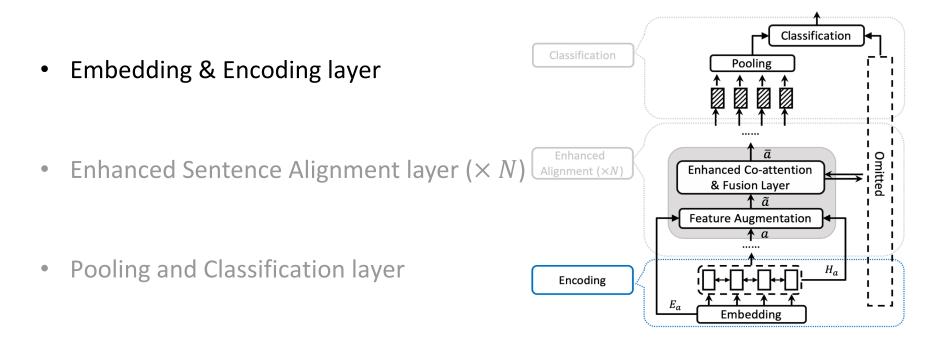
Current Methods on Text Matching

• Sentence Encoding Approach

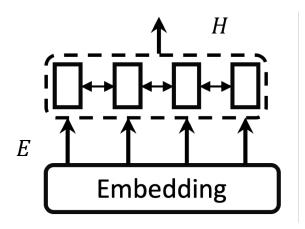
Sentence Interaction Approach

Pre-trained LM

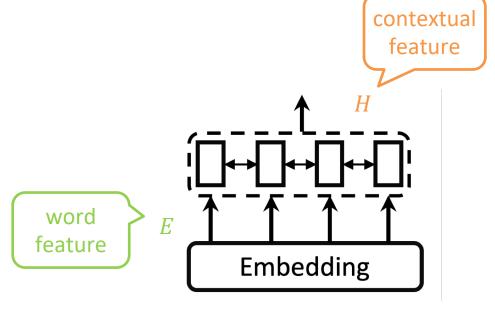

Motivations

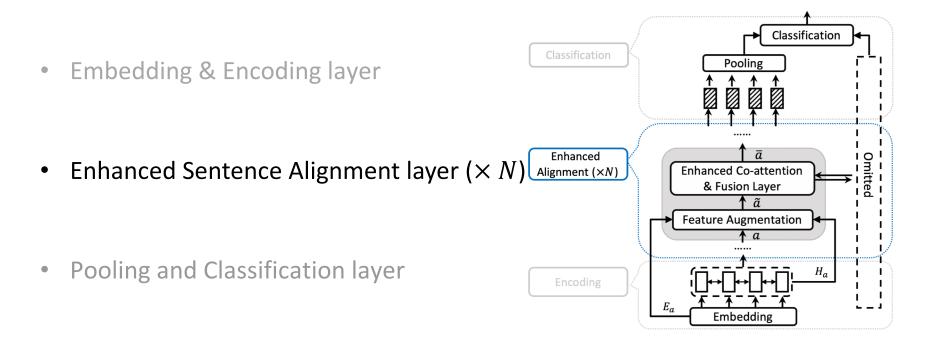

• Can we design an *efficient* model that can be deployed in the real-world system with a fast inference speed?

Motivations

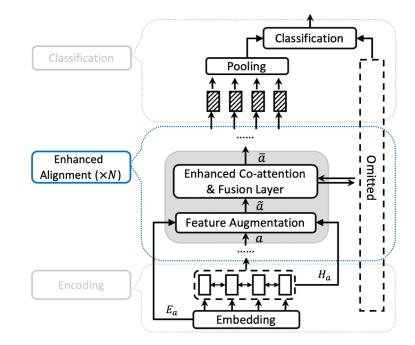

• Can we design an *efficient* model that can be deployed in the real-world system with a fast inference speed?

- Can we improve the existing cross-sentence attention to mitigate the *unstable matching* problem between intermediate representations [Liu et al., 2019a]?
 - Conducting cross-sentence attention between intermediate representations are uncertain and unstable because semantics are changed at different layers.
 - The intermediate representations tend to be affected by error propagation in multi-layered attentions.

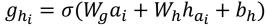




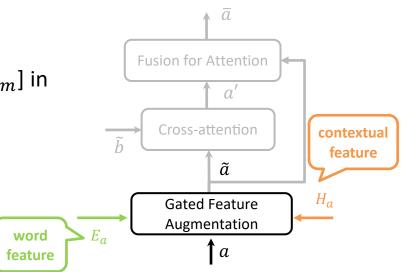
- Embedding
 - static word embedding, fixed
 - char embedding
 - lexical features
- Encoding
 - Bi-LSTM Encoder


- Embedding
 - static word embedding, fixed
 - char embedding
 - lexical features
- Encoding
 - Bi-LSTM Encoder

Enhanced Sentence Alignment layer


We integrate the word and contextual features to each *intermediate representations* to improve the cross-sentence attention and mitigate the unstable matching problem.

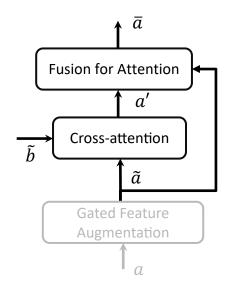
1. Gated Feature Augmentation:


For the intermediate representation $a = [a_1, a_2, ..., a_m]$ in each cross-sentence attention

gate 1: $g_{e_i} = \sigma(W_g a_i + W_e e_{a_i} + b_e)$ gate 2:

Output:

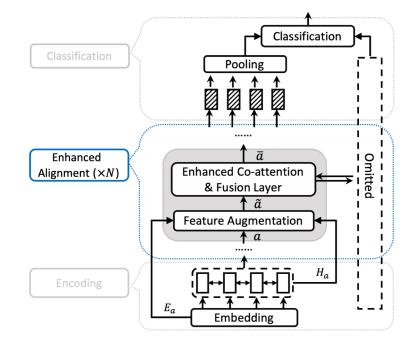
 $\widetilde{a_i} = a_i + g_{e_i} \cdot e_i + g_{h_i} \cdot h_i$

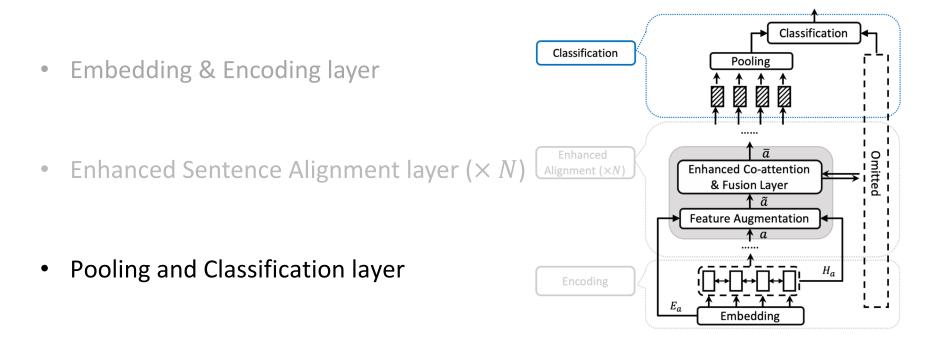

Enhanced Representation

2. Enhanced Cross-sentence Attention & Fusion

Cross-sentence Attention

$$e_{ij} = ReLU(W_c \widetilde{a}_i)^T ReLU(W_c \widetilde{b}_j)$$


$$a' = \sum_{j=1}^{n} \frac{\exp(e_{ij})}{\sum_{k=1}^{n} \exp(e_{ik})} \widetilde{b_j}, \qquad \overline{b} = \sum_{j=1}^{m} \frac{\exp(e_{ij})}{\sum_{k=1}^{m} \exp(e_{kj})} \widetilde{a_i}$$



• Fusion for Attention

$$\bar{a} = F([\tilde{a}_i; a'; \tilde{a}_i - a'; \tilde{a}_i \cdot a'])$$

Multiple alignment layers are stacked

Experiments: datasets

□ Paraphrase Identification

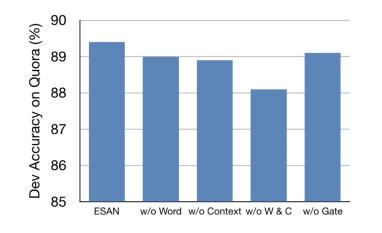
- Quora Question Pairs

□ Natural Language Inference

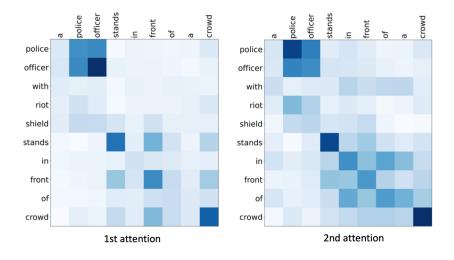
- SNLI
- MultiNLI

• Experiment Results

Model	Quora (acc)	SNLI (acc)	MNLI-m (acc)	MNLI-mm (acc)
DIIN (Gong et al., 2017)	89.1	88.0	78.8	77.8
MwAN (Tan et al., 2018)	88.2	86.9	78.5	77.7
CAFE (Tay et al., 2018)	88.5	88.7	78.7	77.9
ADIN (Liang et al., 2019)	-	88.8	78.8	77.9
Ours	89.3	89.0	79.3	78.4


• Experiment Results

Model	Quora (acc)	SNLI (acc)	MNLI-m (acc)	MNLI-mm (acc)
DIIN (Gong et al., 2017)	89.1	88.0	78.8	77.8
MwAN (Tan et al., 2018)	88.2	86.9	78.5	77.7
CAFE (Tay et al., 2018)	88.5	88.7	78.7	77.9
ADIN (Liang et al., 2019)	-	88.8	78.8	77.9
Ours	89.3	89.0	79.3	78.4
BERT (Devlin et al., 2019)	90.1	90.8	84.6	83.4


• Model Efficiency

Model on Quora	# Params	CPU Inference Time (s/batch) *
BERT	109.5 M	0.88 ± 0.06
Ours	3.9 M	0.04 ± 0.01

• Ablation Results

Attention Visualization

THANKS