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Text Matching

* Paraphrase Detection

—— How do | know if my phone is tapped ?

— How does a landline call a cell phone ? duplicate

—— How do | check if my phone is tapped ?

* Natural Language Inference

—1— Man about to kick football on a field.

—— A man prepares to kick the football.
— The man is an athlete.

—> A man is sweating on a basketball court.

Quora Dataset: https://data.quora.com/First-Quora-Dataset-ReleaseQuestion-Pairs
SNLI Dataset: Bowman, Samuel R., et al. "A large annotated corpus for learning natural language inference." arXiv preprint arXiv:1508.05326 (2015).



https://data.quora.com/First-Quora-Dataset-ReleaseQuestion-Pairs

Current Methods on Text Matching

* Sentence Encoding Approach

e Sentence Interaction Approach
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Current Methods on Text Matching

* Sentence Encoding Approach



Motivations

* Can we design an efficient model that can be deployed in the real-world system with a fast
inference speed?



Motivations

 Can we design an efficient model that can be deployed in the real-world system with a fast
inference speed?

 Can we improve the existing cross-sentence attention to mitigate the unstable matching
problem between intermediate representations [Liu et al., 2019a]?

- Conducting cross-sentence attention between intermediate representations are uncertain and
unstable because semantics are changed at different layers.

- The intermediate representations tend to be affected by error propagation in multi-layered
attentions.



ESAN: enhanced sentence alignment network
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ESAN: enhanced sentence alignment network
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ESAN: enhanced sentence alignment network

 Embedding

- static word embedding, fixed T_ H
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ESAN: enhanced sentence alignment network
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ESAN: enhanced sentence alignment network

Classification
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ESAN: enhanced sentence alignment network

Enhanced Sentence Alignment layer
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ESAN: enhanced sentence alignment network

1. Gated Feature Augmentation:

For the intermediate representation a = [a4, a5, ..., @] in
each cross-sentence attention

gate 1:
Ge; = U(%ai + Weegq, + be)

a

Gated Feature
Augmentation

gate 2: T
gn, = 0(Wya; + Wyhg, + by) ‘

Output:
G =a;+ ge €+ 9gn h {—— Enhanced Representation



ESAN: enhanced sentence alignment network
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ESAN: enhanced sentence alignment network
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ESAN: enhanced sentence alignment network

Pooling and Classification layer
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Experiments: datasets

 Paraphrase ldentification

- Quora Question Pairs

O Natural Language Inference

- SNLI
- MultiNLI



Experiment: results & analysis

e Experiment Results

Quora SNLI MNLI-m MNLI-mm
(acc) (acc) (acc) (acc)

DIIN (Gong et al., 2017) 89.1 88.0 78.8 77.8
MwAN (Tan et al., 2018) 88.2 86.9 78.5 77.7
CAFE (Tay et al., 2018) 88.5 88.7 78.7 77.9
ADIN (Liang et al., 2019) - 88.8 78.8 77.9

Ours 89.3 89.0 79.3 78.4



Experiment: results & analysis

e Experiment Results

Quora SNLI MNLI-m MNLI-mm
(acc) (acc) (acc) (acc)

DIIN (Gong et al., 2017) 89.1 88.0 78.8 77.8
MwAN (Tan et al., 2018) 88.2 86.9 78.5 77.7
CAFE (Tay et al., 2018) 88.5 88.7 78.7 77.9

ADIN (Liang et al., 2019) - 88.8 78.8 77.9
Ours 89.3 89.0 79.3 78.4

BERT (Devlin et al., 2019) 90.1 90.8 84.6 83.4



Experiment: results & analysis

* Model Efficiency

Model on # Params CPU Inference Time
Quora (s/batch) *

BERT 109.5 M 0.88 £ 0.06

Ours 39M 0.04 £ 0.01



Experiment: results & analysis

e Ablation Results

Dev Accuracy on Quora (%)
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