

Context-Aware Interaction Network for Question Matching

Zhe Hu¹, Zuohui Fu², Yu Yin³, and Gerard de Melo⁴

- ¹Baidu Inc
- ²Rutgers University
- ³Northeastern University
- ⁴HPI/University of Potsdam

Question matching aims to predict the semantic relationship given two questions

Current Methods for Text Matching

Sentence Encoding Approach

Sentence Interaction Approach

Pre-trained LM

Current Methods for Text Matching

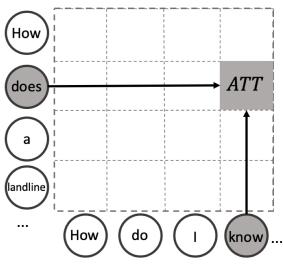
Sentence Encoding Approach

Sentence Interaction Approach

Pre-trained LM

Attention mechanism

Cross-attention is widely adopted for text matching

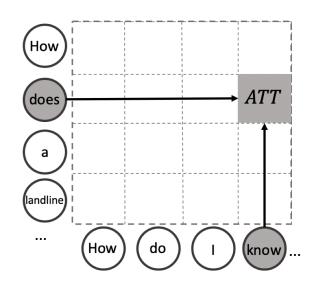


cross-attention

Current word-level cross-attention:

 Computes a word-by-word attention matrix to obtain alignments between two sequences

Current Cross-attention mostly focuses on word-level links

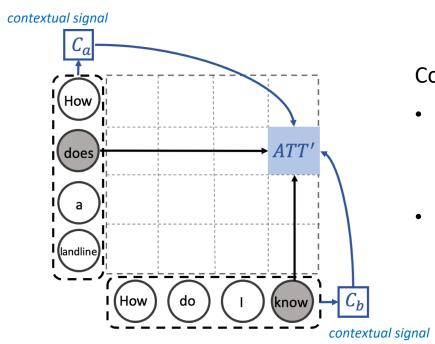


cross-attention

Current word-level cross-attention:

- Computes a word-by-word attention matrix to obtain alignments between two sequences
- Each value of the attention matrix is based on just two individual tokens from the sequences
- Mostly focus on word-level local matching and fail to fully account for the overall semantics

We aim to contextualize **Cross-attention** for better interaction

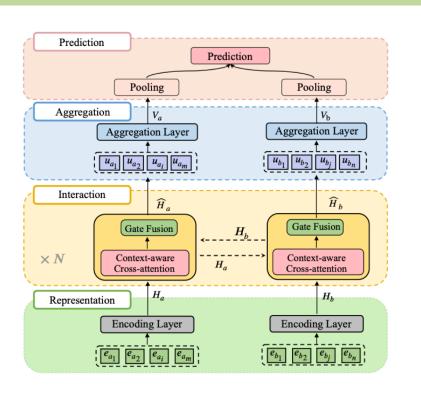


Context-aware cross-attention:

- Enables the model to consult contextual information while computing the attention matrix to measure the word relevance
- Yields better contextualized alignments for semantic reasoning

<u>context-aware</u> cross-attention

COIN: COntext-aware Interaction Network



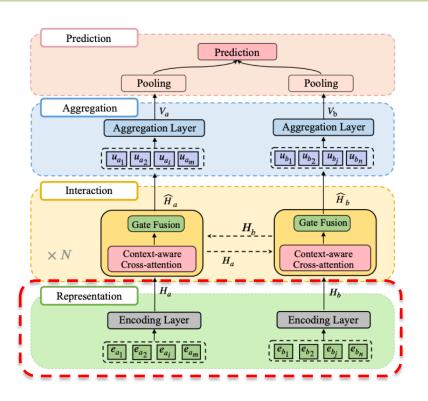
Pooling & Prediction Layer

Aggregation Layer

Context-aware interaction Layer

Input Representation Layer

COIN: COntext-aware Interaction Network

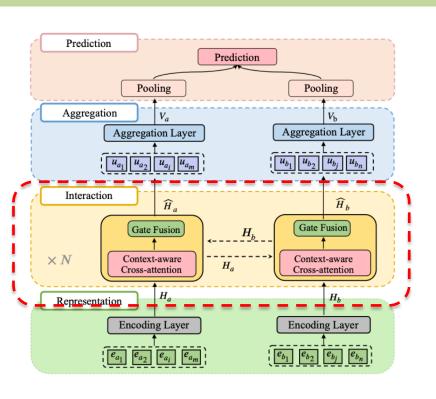


 Input Representation Layer: converts sentences into matrix representations with an embedding and encoding layer

$$\mathbf{H}_a = \operatorname{Layer}_{\operatorname{input}}(\mathbf{S}_{\operatorname{a}})$$

$$\mathbf{H}_b = \operatorname{Layer}_{\operatorname{input}}(\mathbf{S}_{\operatorname{b}})$$

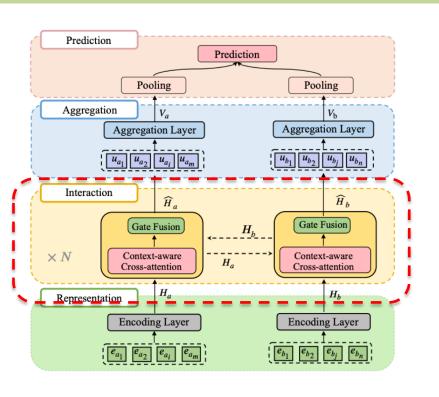
COIN: COntext-aware Interaction Network



- Context-aware interaction Layer
- Context-Aware Cross-Attention Layer: computes the aligned information of each sequence;

 Gated Fusion Layer: updates sequence representations by blending the alignments with the original ones;

COIN: COntext-aware Interaction Network



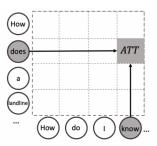
Context-aware interaction Layer

1. Context-Aware Cross-Attention Layer

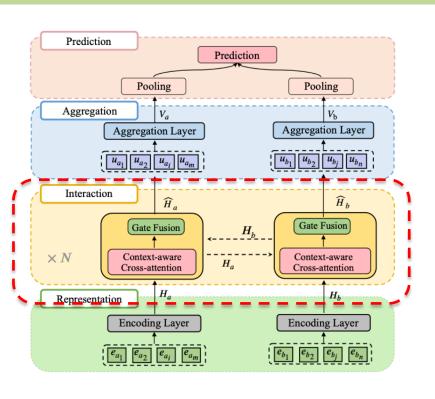
Original cross-attention

Step 1: compute attention matrix:

$$\mathbf{E}_{ij} = \operatorname{Att}(\mathbf{h}_{a_i}, \mathbf{h}_{b_j})$$
$$= FFN(\mathbf{h}_{a_i})^{\mathrm{T}}FFN(\mathbf{h}_{b_i})$$



COIN: COntext-aware Interaction Network



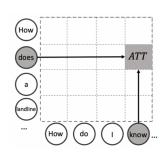
Context-aware interaction Layer

1. Context-Aware Cross-Attention Layer

Original cross-attention

Step 1: compute attention matrix:

$$\mathbf{E}_{ij} = \operatorname{Att}(\mathbf{h}_{a_i}, \mathbf{h}_{b_j})$$
$$= FFN(\mathbf{h}_{a_i})^{\mathrm{T}}FFN(\mathbf{h}_{b_i})$$

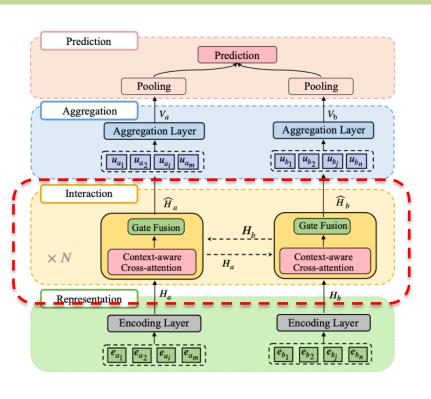


Step 2: compute alignments

$$\mathbf{a}_i = \operatorname{softmax}(\mathbf{E}_{i:}), \quad \mathbf{b}_j = \operatorname{softmax}(\mathbf{E}_{:j})$$

$$\mathbf{h}_{b_j}' = \sum_{k=1}^m \mathbf{b}_{kj} \mathbf{h}_{a_k}, \quad \mathbf{h}_{a_i}' = \sum_{k=1}^n \mathbf{a}_{ik} \mathbf{h}_{b_k}$$

COIN: COntext-aware Interaction Network



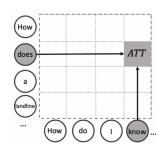
Context-aware interaction Layer

1. Context-Aware Cross-Attention Layer

Original cross-attention

Step 1: compute attention matrix:

$$\mathbf{E}_{ij} = \operatorname{Att}(\mathbf{h}_{a_i}, \mathbf{h}_{b_j})$$
$$= FFN(\mathbf{h}_{a_i})^{\mathrm{T}}FFN(\mathbf{h}_{b_j})$$

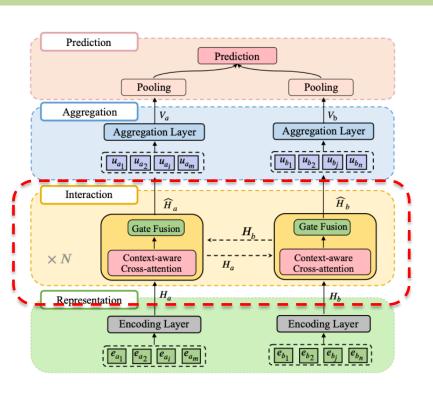


Step 2: compute alignments

$$\mathbf{a}_i = \operatorname{softmax}(\mathbf{E}_{i:}), \quad \mathbf{b}_j = \operatorname{softmax}(\mathbf{E}_{:j})$$

$$\mathbf{h}_{b_j}' = \sum_{k=1}^m \mathbf{b}_{kj} \mathbf{h}_{a_k}, \quad \mathbf{h}_{a_i}' = \sum_{k=1}^n \mathbf{a}_{ik} \mathbf{h}_{b_k}$$

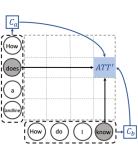
COIN: COntext-aware Interaction Network



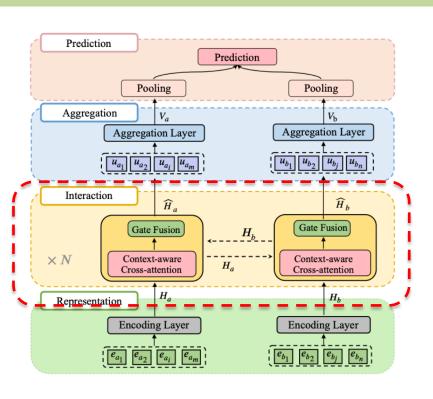
- Context-aware interaction Layer
- 1. Context-Aware Cross-Attention Layer

Context-aware cross-attention

We want to integrate **contextual features C**



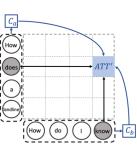
COIN: COntext-aware Interaction Network



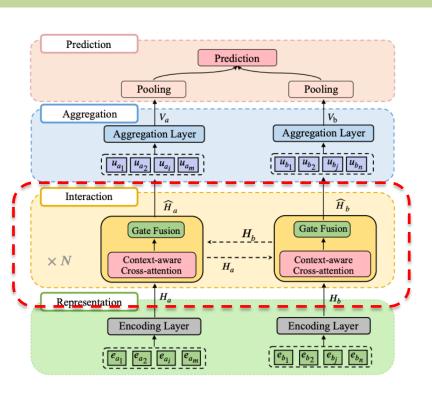
- Context-aware interaction Layer
- 1. Context-Aware Cross-Attention Layer

Context-aware cross-attention

- We want to integrate contextual features C
- We apply a **self-alignment layer** to aggregate pertinent contextual information



COIN: COntext-aware Interaction Network

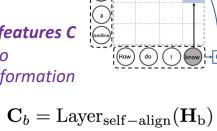


Context-aware interaction Layer

1. Context-Aware Cross-Attention Layer

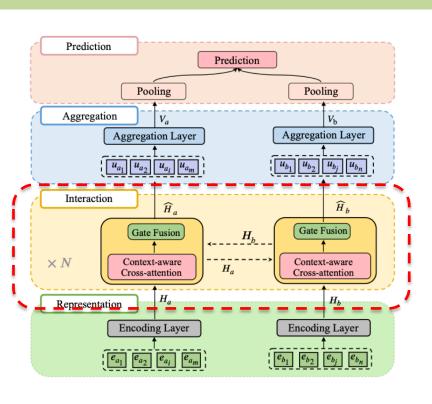
Context-aware cross-attention

- We want to integrate contextual features C
- We apply a self-alignment layer to aggregate pertinent contextual information



$$egin{align} \mathbf{C}_a &= \operatorname{Layer}_{\mathrm{self-align}}(\mathbf{H}_{\mathrm{a}}) & \mathbf{C}_b \ & \\ \mathbf{E}_{ij}^{\mathrm{c}} &= \operatorname{Att}_{\mathrm{context}}(\mathbf{h}_{a_i}, \mathbf{h}_{b_j}, \mathbf{c}_{a_i}, \mathbf{c}_{b_j}) \ &= FFN(\mathbf{h}_{a_i} + \mathbf{c}_{a_i})^{\mathrm{T}}FFN(\mathbf{h}_{b_j} + \mathbf{c}_{b_j}) \ \end{array}$$

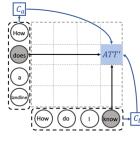
COIN: COntext-aware Interaction Network



- Context-aware interaction Layer
- 1. Context-Aware Cross-Attention Layer

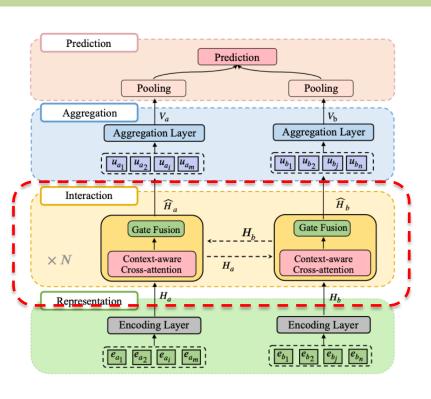
Context-aware cross-attention

- We want to integrate **contextual features C**
- We apply a self-alignment layer to aggregate pertinent contextual information



$$\mathbf{C}_a = \operatorname{Layer}_{\operatorname{self-align}}(\mathbf{H}_{\operatorname{a}})$$
 $\mathbf{C}_b = \operatorname{Layer}_{\operatorname{self-align}}(\mathbf{H}_{\operatorname{b}})$ $\mathbf{E}_{ij}^{\operatorname{c}} = \operatorname{Att}_{\operatorname{context}}(\mathbf{h}_{a_i}, \mathbf{h}_{b_j}, \mathbf{c}_{a_i}, \mathbf{c}_{b_j})$ $= FFN(\mathbf{h}_{a_i} + \mathbf{c}_{a_i})^{\operatorname{T}} FFN(\mathbf{h}_{b_j} + \mathbf{c}_{b_j})$

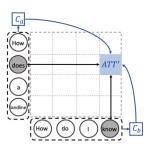
COIN: COntext-aware Interaction Network



- Context-aware interaction Layer
- 1. Context-Aware Cross-Attention Layer

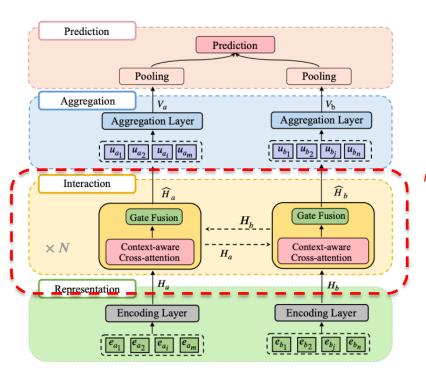
Context-aware cross-attention

- We want to integrate contextual features C
- We apply a **self-alignment layer** to aggregate pertinent contextual information

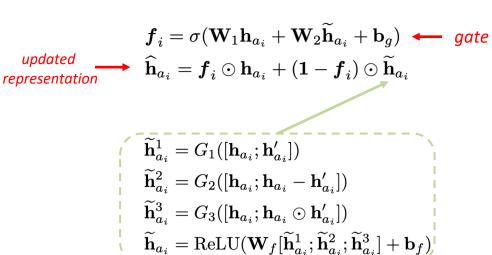


This mirrors human behavior that people tend to <u>first</u> read each sentence and pay attention to the salient contents, and then <u>compare and match two sentences</u>.

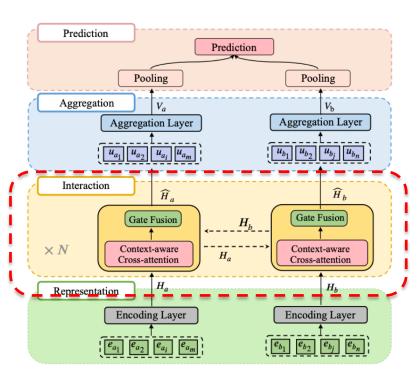
COIN: COntext-aware Interaction Network



- Context-aware interaction Layer
- 2. Gated Fusion Layer



COIN: COntext-aware Interaction Network



Context-aware interaction Layer

2. Gated Fusion Layer

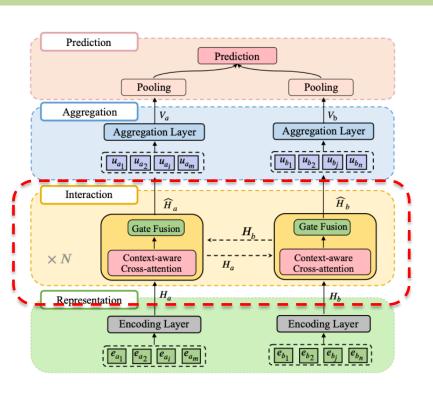
updated representation

$$egin{aligned} oldsymbol{f}_i &= \sigma(\mathbf{W}_1\mathbf{h}_{a_i} + \mathbf{W}_2\widetilde{\mathbf{h}}_{a_i} + \mathbf{b}_g) & ext{gate} \ \widehat{\mathbf{h}}_{a_i} &= oldsymbol{f}_i\odot\mathbf{h}_{a_i} + (\mathbf{1} - oldsymbol{f}_i)\odot\widetilde{\mathbf{h}}_{a_i} \end{aligned}$$

Gated Fusion

- Enable model to flexibly incorporate aligned features by controlling gates;
- Similar to a skip connection in mitigating the additional model complexity coming from the deeper structure (multiple interactions)

COIN: COntext-aware Interaction Network



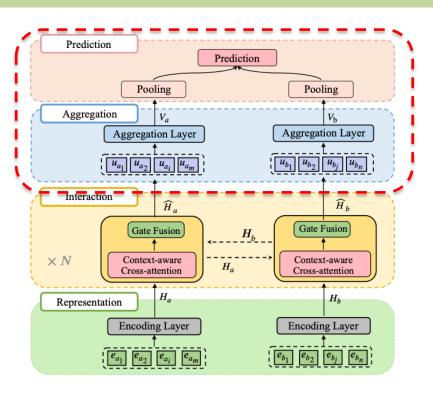
Context-aware interaction Layer

2. Gated Fusion Layer

- We compare the original representations and the aligned ones from difference perspectives
- encourage model to better learn the semantic relationship and update the original representations

$$\begin{aligned} \widetilde{\mathbf{h}}_{a_i}^1 &= G_1([\mathbf{h}_{a_i}; \mathbf{h}'_{a_i}]) \\ \widetilde{\mathbf{h}}_{a_i}^2 &= G_2([\mathbf{h}_{a_i}; \mathbf{h}_{a_i} - \mathbf{h}'_{a_i}]) \\ \widetilde{\mathbf{h}}_{a_i}^3 &= G_3([\mathbf{h}_{a_i}; \mathbf{h}_{a_i} \odot \mathbf{h}'_{a_i}]) \\ \widetilde{\mathbf{h}}_{a_i} &= \text{ReLU}(\mathbf{W}_f[\widetilde{\mathbf{h}}_{a_i}^1; \widetilde{\mathbf{h}}_{a_i}^2; \widetilde{\mathbf{h}}_{a_i}^3] + \mathbf{b}_f) \end{aligned}$$

COIN: COntext-aware Interaction Network



Aggregation & Prediction Layer

$$\mathbf{P} = FFN([\mathbf{V}_{\mathrm{a}}'; \mathbf{V}_{\mathrm{b}}'; \mathbf{V}_{\mathrm{a}}' - \mathbf{V}_{\mathrm{b}}'; \mathbf{V}_{\mathrm{a}}' \odot \mathbf{V}_{\mathrm{b}}'])$$

Experimental Setup

Datasets

- Quora Question Pairs
 - English question pairs from Quora.com
 - Use the splits from (Wang et al. 2017)
- LCQMC Corpus (Liu et al. 2018)
 - Open-domain question matching corpus from Baidu Knows
 - Use the original splits

Evaluation Metrics

- Accuracy
- F1-score

Dataset	Train	Dev	Test	# Classes
Quora	384K	10K	10K	2
LCQMC	239K	9K	13K	2

Better results than non-pretrained methods

ĺ		
Model	Acc (%)	F1 (%)
Lattice-CNN	82.1	82.4
ESIM (Chen et al., 2017)	82.0	84.0
BiMPM (Wang et al., 2017)	83.3	84.9
GMN (Chen et al., 2020)	84.6	86.0
COIN (Ours)	85.6	86.5
BERT-(Devlin et-al., 2019)	- 85.7	- 86. 8- 1
SBERT (Reimers and Gurevych, 2019)	85.4	86.6
COIN (ensemble)	86.2	87.0

Model	Acc. (%)	Params
BiMPM (Wang et al., 2017)	88.2	1.6M
DIIN (Gong et al., 2017)	89.0	4.4M
CAFE (Tay et al., 2018)	88.7	4.7M
OSOA-DFN (Liu et al., 2019)	89.0	10.0M
RE2 (Yang et al., 2019b)	89.2	2.8M
ESAN (Hu et al., 2020)	89.3	3.9M
Enhanced-RCNN (Peng et al., 2020)	89.3	7.7M
COIN (ours)	89.4	6.5M
BERT (Devlin et al., 2019)	 90.F -	109.5M
SBERT (Reimers and Gurevych, 2019)	90.6	109.5M
COIN (ensemble)	90.7	32.5M

Results on LCQMC

Comparable results with pre-trained methods

Model	Acc (%)	F1 (%)
Lattice-CNN	82.1	82.4
ESIM (Chen et al., 2017)	82.0	84.0
BiMPM (Wang et al., 2017)	83.3	84.9
GMN (Chen et al., 2020)	84.6	86.0
COIN (Ours)	85.6	86.5
BERT (Devlin et al., 2019)	85.7	86.8
SBERT (Reimers and Gurevych, 2019)	85.4	86.6
COIN (ensemble)	86.2	87.0

Model	Acc. (%)	Params
BiMPM (Wang et al., 2017)	88.2	1.6M
DIIN (Gong et al., 2017)	89.0	4.4M
CAFE (Tay et al., 2018)	88.7	4.7M
OSOA-DFN (Liu et al., 2019)	89.0	10.0M
RE2 (Yang et al., 2019b)	89.2	2.8M
ESAN (Hu et al., 2020)	89.3	3.9M
Enhanced-RCNN (Peng et al., 2020)	89.3	7.7M
COIN (ours)	89.4	6.5M
BERT (Devlin et al., 2019)	90.1	109.5M
SBERT (Reimers and Gurevych, 2019)	90.6	109.5M
COIN (ensemble)	90.7	32.5M

Results on LCQMC

fewer parameters than many SOTA methods

Model	Acc (%)	F1 (%)
Lattice-CNN	82.1	82.4
ESIM (Chen et al., 2017)	82.0	84.0
BiMPM (Wang et al., 2017)	83.3	84.9
GMN (Chen et al., 2020)	84.6	86.0
COIN (Ours)	85.6	86.5
BERT (Devlin et al., 2019)	85.7	86.8
SBERT (Reimers and Gurevych, 2019)	85.4	86.6
COIN (ensemble)	86.2	87.0

Model	Acc. (%)	Params
BiMPM (Wang et al., 2017)	88.2	1.6M
DIIN (Gong et al., 2017)	89.0	4.4M
CAFE (Tay et al., 2018)	88.7	4.7M
OSOA-DFN (Liu et al., 2019)	89.0	10.0M
RE2 (Yang et al., 2019b)	89.2	2.8M
ESAN (Hu et al., 2020)	89.3	3.9M
Enhanced-RCNN (Peng et al., 2020)	89.3	7.7M
COIN (ours)	89.4	6.5M
BERT (Devlin et al., 2019)	90.1	109.5M
SBERT (Reimers and Gurevych, 2019)	90.6	109.5M
COIN (ensemble)	90.7	32.5M

Results on LCQMC

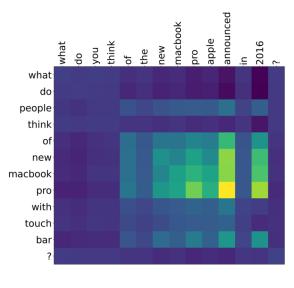
5-run Ensemble results even outperform pre-trained methods

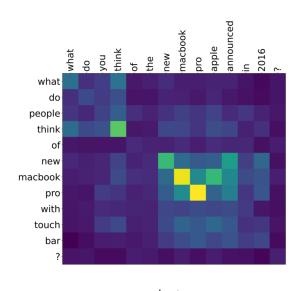
Model	Acc (%)	F1 (%)
Lattice-CNN	82.1	82.4
ESIM (Chen et al., 2017)	82.0	84.0
BiMPM (Wang et al., 2017)	83.3	84.9
GMN (Chen et al., 2020)	84.6	86.0
COIN (Ours)	85.6	86.5
BERT (Devlin et al., 2019)	85.7	86.8
SBERT (Reimers and Gurevych, 2019)	85.4	86.6
COIN (ensemble)	86.2	87.0

Model	Acc. (%)	Params
BiMPM (Wang et al., 2017)	88.2	1.6M
DIIN (Gong et al., 2017)	89.0	4.4M
CAFE (Tay et al., 2018)	88.7	4.7M
OSOA-DFN (Liu et al., 2019)	89.0	10.0M
RE2 (Yang et al., 2019b)	89.2	2.8M
ESAN (Hu et al., 2020)	89.3	3.9M
Enhanced-RCNN (Peng et al., 2020)	89.3	7.7M
COIN (ours)	89.4	6.5M
BERT (Devlin et al., 2019)	90.1	109.5M
SBERT (Reimers and Gurevych, 2019)	90.6	109.5M
COIN (ensemble)	90.7	32.5M

Results on LCQMC

Visualization of Alignments





3rd alignment

- Aided by the context, the model learns to correctly align the salient words & phrases;
- Model refines alignments from low level to high level;
- Structed phrase "what do you think of" is also connected, which is an important feature for question matching

Conclusion

➤ Improve cross-attention by incorporating contextual cues to better align two sequences

➤ Leverage a gate fusion layer to flexibly integrate the aligned features

Achieve better results on two question matching datasets.

Thank You