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Abstract

Controllable text generation is an appealing but challenging
task, which allows users to specify particular attributes of the
generated outputs. In this paper, we propose a controllable
dialogue generation model to steer response generation under
multi-attribute constraints. Specifically, we define and cate-
gorize the commonly-used control attributes into global and
local ones, which possess different granularities of effects on
response generation. Then, we significantly extend the con-
ventional seq2seq framework by introducing a novel two-
stage decoder, which first uses a multi-grained style specifi-
cation layer to impose the stylistic constraints and determine
word-level control states of responses based on the attributes,
and then employs a response generation layer to generate
final responses maintaining both semantic relevancy to the
contexts and fidelity to the attributes. Furthermore, we train
our model with an attribute consistency reward to promote
response control with explicit supervision signals. Extensive
experiments and in-depth analyses on two datasets indicate
that our model can significantly outperform competitive base-
lines in terms of response quality, content diversity and con-
trollability.

1 Introduction
As a long-standing task in natural language processing, dia-
logue generation aims to automatically produce responses
given input contexts. In this aspect, the dominant meth-
ods are neural sequence-to-sequence (seq2seq) models (Cho
et al. 2014b; Vinyals and Le 2015; Shang, Lu, and Li 2015)
trained to maximize the log-likelihood over responses in an
end-to-end fashion. However, such generated responses not
only lack controllability and interpretability (Hua and Wang
2019), but also tend to be boring with genericness and repet-
itiveness (Li et al. 2016a).

One important reason for these defects stems from the
fact that the above models neglect the one-to-many relation-
ship between context and response (Zhang et al. 2018a; Xu
et al. 2019). As shown in Figure 1, for the same context,
there exist multiple valid responses corresponding to dif-
ferent attributes. Generally, the conventional methods maxi-
mizing the likelihood of responses given contexts are unable

*These authors contributed equally. Work done while Zhiwei
Cao was an intern at Baidu.

How do you like the pizza here?
Context

Responses

……

Attributes

Relatedness
high

Specificity
I think it’s good.

high

Length
long

short

Delicious pizza with excellent service.

I like the pizza here.
Great Italian restaurant.

Not bad.
Perfect! It really hits the spot.

Figure 1: There exist multiple responses with different control at-
tributes for the same input context. Length controls response from a
global perspective, whereas Specificity and Relatedness can be di-
rectly reflected on each response token. Color brightness indicates
the corresponding attribute values.

to explicitly learn the correspondence relationship between
response and attributes. Thus, incorporating explicit control
into the generation is crucial to tackle the above defects.

To achieve this goal, many efforts have been devoted to
exploring control variables for dialogue generation (Zhao,
Zhao, and Eskenazi 2017; See et al. 2019; Zhang et al.
2018a). However, these studies mainly focus on leveraging
a single attribute to control a specific aspect, which is un-
suitable for real applications that involve multiple attributes.
Recently, Xu et al. (2019) propose a memory-enhanced
seq2seq model to govern response generation with multi-
ple variables. Nevertheless, there still exist three drawbacks
in these studies: 1) They equally consider all attributes, but
as shown in Figure 1, different attributes impact generation
with varying effects (e.g., some attributes control response
globally whereas some attributes possess the fine-grained
influence on each response token). This hinders the model
flexibility to accurately reflect the attributes on outputs. 2)
Controllable generation involves a complicated disentangle-
ment process, where the model is required to generate re-
sponses maintaining both relevancy to the contexts and fi-
delity to the attributes, especially under the multi-attribute
constraints. However, existing dialogue models couple style
specification and response generation altogether in a single



module, which leads to low interpretability and controllabil-
ity. 3) Current methods are usually trained with the maxi-
mum likelihood objective and only learn weak connections
between the control attributes and responses, thus often gen-
erating outputs inconformable to the attributes.

In this paper, we propose CRAYON, a framework to gen-
erate Controllable Response with multi-grAined stYle spec-
ification and attribute cONsistency reward. We consider im-
portant dialogue attributes including specificity, sentiment,
response-relatedness, question-asking and response length.
We further classify these attributes into two categories based
on their properties: global attributes affecting the generation
of responses from an overall perspective, and local attributes
influencing the generation of each response word. Such clas-
sification enables our model to more flexibly and accurately
control response generation at different levels.

To tackle the second drawback, we separate the control
states and semantic states by dividing the generation process
into two steps of style specification and surface generation,
which further improves the model controllability and inter-
pretability. Specifically, as a significant extension of con-
ventional seq2seq method (Cho et al. 2014b), our model is
equipped with a novel two-stage controlled decoder: 1) a
multi-grained style specification layer first imposes stylis-
tic constraints and generates a sequence of word-level con-
trol states based on the attributes, and 2) a response genera-
tion layer then handles semantic requirements on relevancy
and produces a final response. To the best of our knowl-
edge, our work is the first attempt that applies word-level
style specification with multi-grained control to achieve bet-
ter disentanglement for controllable generation.

Furthermore, we apply reinforcement learning (RL) with
Markov Decision Process to optimize the model towards
dedicated reward functions. During this process, we design
reward functions that explicitly encourage the generated re-
sponses to satisfy the attribute constraints. By introducing
direct supervision signals on attribute fidelity, our model is
able to generate more diverse responses with better control-
lability.

We carry out experiments on two dialogue generation
datasets, Persona-Chat and DailyDialog. Automatic and hu-
man evaluations show that our model significantly outper-
forms both controllable and non-controllable baselines to-
wards response quality, content diversity and controllability,
demonstrating the ability to disentangle the complex con-
trollable generation under multi-attribute constraints.

2 Our Model

2.1 Task Formulation and Model Overview

Given an input context x = (x1, ..., xN ), our model aims to
generate a response y = (y1, ..., yM ) that also satisfies the
control attributes z. During training, the model jointly learns
response generation and attribute prediction. By doing so,
our model is able to generate responses in both scenarios
whether control attributes are explicitly given by users or au-
tomatically inferred from contexts. We will specify the de-
tails later.
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$
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Figure 2: The overview of CRAYON. x, y and z denotes the input
context, response and control attributes respectively. The attributes
can be either provided by the user or automatically inferred from
the contexts.

As shown in Figure 2, our model is based on an encoder-
decoder framework, which mainly consists of three compo-
nents: 1) a context encoder (§ 2.2) first converts an input
context into a sequence of hidden states; 2) an attribute pre-
dictor (§ 2.3) predicts the control attributes z according to
the input context; 3) a two-stage controlled decoder (§ 2.4)
takes as inputs the encoder outputs and attributes, and gen-
erates a final response in a controllable manner.

2.2 Context Encoder
The context encoder maps input contexts into hidden repre-
sentations using a bi-directional GRU network (Cho et al.
2014a). Formally, given an input x, the encoder generates a
sequence of hidden states {hx

i }Ni=1, which will be used for
both attribute predictor and initial states of decoder layers.

2.3 Attribute Predictor
We design an attribute predictor to predict each attribute
given the input context. This enables our model to generate
responses with proper attributes when they are not provided
during inference. Specifically, taking the last context hidden
state hx

N as input, we predict the attributes as follows:

P (zj |x) = softmax(MLPj(h
x
N )), (1)

where zj is the j-th attribute, and MLPj(∗) denotes a multi-
layer feed-forward network for zj .

Inspired by Lian et al. (2019), we further incorporate the
posterior distribution P ′(zj |x,y) to leverage both input con-
text and response, and train the predictor by reducing the
prediction divergence between its prior P (zj |x) and pos-
terior distributions to improve the prediction performance.
Please refer to the supplementary material for the details.

2.4 Two-stage Controlled Decoder
Figure 3 shows the basic architecture of our two-stage con-
trolled decoder. We first use a multi-grained style specifi-
cation layer to generate a sequence of word-level control
states based on the control attributes. Then, we stack a re-
sponse generation layer to produce final response with both
input context and control states. By separating the control
states and semantic states, our model is able to address the
complicated disentanglement and generate responses main-
taining both semantic relevancy to the contexts and fidelity
to the attributes.
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Figure 3: Our two-stage controlled decoder. The multi-grained style specification layer first generates a sequence of control states {hz
t }

based on the attributes, and meanwhile predicts local attribute values {v∗kt} for each local attribute (Eq. 4). The response generation layer
then produces the final response based on the control states and context.

Multi-grained Style Specification Layer We design a
novel multi-grained style specification layer to disentangle
the stylistic information of the response based on the given
attributes. With attributes z as input, we first introduce an
attribute embedding layer to obtain their embeddings. Then,
we concatenate all local attribute embeddings and all global
ones into two control vectors: ezl and ezg , respectively.
Based on these two vectors, we finally generate the control
state for each response word.

Specifically, given the local control vector ezl, we first
use a GRU network to calculate a sequence of local control
states {hzl

t }:

hzl
t = GRU(hzl

t−1,kt), (2)

kt = ezl � σ(MLP([hzl
t−1; e

zl])), (3)

where σ(∗) is a sigmoid nonlinear transformation and� rep-
resents element-wise multiplication to dynamically inject at-
tributes into each token. Then, we concatenate each local
control state with the global control vector ezg to form the
final word-level control state, i.e., hz

t = [hzl
t ; ezg]. Through

the above operations, each control state is governed by both
local and global control vectors, ezl and ezg , where ezl is
dynamically imposed at each time step, while ezg statically
impacts the control state from a global perspective.

Particularly, to enhance the representations of the control
states, we further introduce an auxiliary task of local style
prediction to predict local attribute values for each response
token. We define the local style prediction loss as

Ll-style = −
|Zl|∑
k=1

M∑
t=1

logP (v∗kt|hzl
t ), (4)

where |Zl| is the number of local attributes, and v∗kt repre-
sents the ground-truth value of the k-th local attribute for the
t-th response word. We will introduce the label construction
of v∗kt in Section 4.1.

Response Generation Layer On the top of the multi-
grained style specification layer, we adopt a response gen-
eration layer based on another GRU network to handle the
semantic requirements and generate the final response.

Concretely, at the t-th step, the response generation layer
consumes control state hz

t and the previous generated token
yt−1 to calculate the semantic hidden state hr

t :

hr
t = GRU(hr

t−1, tanh(Wwyt−1 +Wzh
z
t )), (5)

where W∗ are trainable parameters. We also leverage the at-
tention mechanism (Bahdanau, Cho, and Bengio 2014) over
the input context to compute a context vector ct, and then
calculate the probability of the next generated word yt:

P (yt|y1:t−1) = softmax(Wg[h
r
t ; ct]) + bg), (6)

ct = ATT(Hx,hr
t ), (7)

where Wg and bg are trainable parameters, and ATT(∗) rep-
resents the attention operation.

3 Model Training
Our model is first trained with maximum likelihood (ML)
objective. Since ML objective does not provide direct super-
vision on attribute fidelity, we further employ policy-based
reinforcement learning (RL) with an attribute consistency
reward to continuously train our model. By doing so, we ex-
pect our model to generate responses with better fidelity to
the control attributes.

3.1 ML Training Objective
Our ML training objective mainly includes: negative log-
likelihood loss (Lnll), local style prediction loss (Ll-style),
constrained bag-of-words loss (Lc-bow), and attribute predic-
tion loss (Lattr)1:

1Details of attribute prediction loss are provided in supplemen-
tary.



Lml = Lnll + α · Ll-style + β · Lc-bow + γ · Lattr, (8)

where α, β and γ are balancing coefficients.
Specifically, we adopt the negative log-likelihood loss for

response generation:

Lnll = −
∑

(x,y,z)∈D

logP (y|x, z; θ), (9)

where y, x and z are response, context and control at-
tributes, and θ is model parameter set.

Inspired by Zhao, Zhao, and Eskenazi (2017), we further
design a novel constrained bag-of-words loss to improve the
model intepretability and controllability:

Lc-bow = −Ez∼P (z|x)

M∑
t=1

logPb(yt|x, z), (10)

where Pb(∗) is an MLP with softmax, which transforms hx
N

and ez to a probability distribution with the dimension same
as vocabulary size V . The constrained bag-of-words loss
discards word orders and facilitates the model to capture the
global semantics of the target response. Also, compared with
the original BOW loss, the C-BOW loss optimizes the model
to ground the control variables with the explicit semantic in-
formation corresponding to the attributes, which enhances
the model interpretability from probabilistic perspective, as
mentioned in (Fu, Feng, and Cunningham 2019).

3.2 RL with Attribute Consistency
We apply the self-critical policy gradient training algo-
rithm (Rennie et al. 2017) to use discrete metrics as RL re-
wards:

Lrl = −(R(ys)−R(ŷ)) logP (ys|x, z; θ), (11)

where ys is a sampled response obtained by sampling words
from P (ys|x, z; θ), and ŷ is a self-critical baseline yielded
by greedily selecting words that maximize the output prob-
ability at each time step. R(∗) is the reward function.
Reward Function. To encourage responses to satisfy the
control attributes, we design an attribute consistency re-
ward. Specifically, for discrete attributes such as Question-
asking, we give a reward of 1 if the response conforms
the attribute, or give 0 otherwise. For continuous attributes
such as Specificity, we first quantize the value into discrete
bins, and measure the reverse distance between the response
bin value ẑ and the attribute bin value z∗ as the reward:
1 − |ẑ − z∗|/(#− 1), where # is the number of bins. The
final reward is written as R(y) =

∑
zi
Ri(y).

4 Experiments
4.1 Experimental Setups
Datasets and Preprocessing We conduct experiments
on Persona-Chat and DailyDialog datasets. Persona-
Chat (Zhang et al. 2018b) is a conversation dataset grounded

Dataset Train Val. Test

Persona-Chat 122,343 14,602 14,056
DailyDialog 69,107 6,458 6,128

Table 1: Statistics on the datasets for experiments.

on personas, where each participant is assigned with a per-
sona profile serving as background knowledge. We prepend
persona texts to dialogue history as the input context. Dai-
lyDialog (Li et al. 2017b) is a multi-turn chit-chat dataset
containing conversations about daily life. We follow the pre-
processing as Bao et al. (2020), and the data statistics are
summarized in Table 5.

We exploit five control attributes in our experiments: 1)
Specificity (Spe.): following Zhang et al. (2018a) and See
et al. (2019), we calculate the specificity value based on
the normalized inverse response frequency (NIDF), which
is then discretized into 3 bins; 2) Sentiment (Sent.): we run
Stanford CoreNLP (Manning et al. 2014) to annotate senti-
ment results, which can be labeled as “positive”, “neutral” or
“negative”; 3) Response-relatedness (Rel.): following See
et al. (2019), we compute response-relatedness based on the
cosine similarity between the embeddings of response and
the last utterance, and discretize the value into 3 bins; 4)
Question-asking (Q-A): we also consider question-asking
as implemented in See et al. (2019). This binary feature
is set to “True” if and only if at least one word in {how,
what, when, where, which, who, whom, whose, why, ?} ap-
pear in the response; and 5) Length (Len.): we quantize
the response length into 3 bins to represent different size
ranges (Fan, Grangier, and Auli 2018). Furthermore, we cat-
egorize Sentiment, Length and Question-asking as global at-
tributes, and Specificity and Response-relatedness as local
attributes based on their properties. Details of attribute cate-
gorization are provided in the supplementary.

For local prediction loss as in Equation 4, we construct
local attribute labels for each response word. For Specificity,
we discretize the NIDF score of each token into 6 bins. For
Response-relatedness, we compute the cosine similarity be-
tween the word embedding and the embedding of the last
utterance, and then quantize this similarity into 6 bins.

Baselines and Settings We first compare our model
with the following non-controllable baselines: 1)
SEQ2SEQ (Bahdanau, Cho, and Bengio 2014): the standard
sequence-to-sequence model with attention mechanism;
2) TRANSFORMER (Vaswani et al. 2017): the standard
transformer-based model which has been proved effective
for text generation tasks; 3) CVAE (Zhao, Zhao, and
Eskenazi 2017): a conditional variational autoencoder that
captures the discourse-level diversity; 4) PER-CVAE (Song
et al. 2019): a memory-augmented architecture with in-
corporation of explicit persona texts. Besides, we consider
controllable baselines including 1) GTMNES2S (Xu et al.
2019): a sequence-to-sequence architecture with a goal
tracking memory network2; 2) CT (See et al. 2019; Keskar

2Since the source code of GTMNES2S are not released, we im-
plement their method. Details are provided in supplementary.



Persona-Chat DailyDialog

PPL.↓ BLEU-1↑ BLEU-2 Dist.1↑ Dist.2 PPL.↓ BLEU-1↑ BLEU-2 Dist.1↑ Dist.2

Non-controllable Comparisons
SEQ2SEQ 30.83 19.95 3.26 1.63 13.34 30.08 19.59 2.07 3.55 23.09
TRANSFORMER 32.08 18.34 2.44 1.57 11.78 29.44 18.22 1.92 4.10 22.81
CVAE∗ † 16.67 1.97 2.07 15.39 39.68 14.79 1.07 4.05 26.52
PER-CVAE∗ 40.91 17.14 1.97 2.74 22.35 - - - - -

System Setting (the attributes are not provided and need to be predicted)
CT-APPEND 31.66 19.10 3.03 1.72 15.18 34.18 19.06 1.94 3.85 25.69
CT-EMB 33.53 19.57 3.19 1.68 13.98 35.79 18.40 2.04 3.82 26.48
GTMNES2S∗ 31.36 18.84 3.24 1.03 14.66 29.05 17.48 2.01 2.91 22.79
CRAYON (ours) 27.80 21.07 3.55 1.77 16.15 26.80 21.91 2.74 4.32 27.23
CRAYON + RL 27.77 20.64 3.40 2.05 18.49 27.50 21.66 2.84 5.02 31.33

Oracle Setting (the true attributes are provided)
CT-APPEND 25.26 23.81 4.55 1.87 17.10 26.80 23.20 2.82 3.86 26.41
CT-EMB 26.08 23.85 4.72 2.06 17.94 26.94 22.28 2.74 3.92 27.55
GTMNES2S∗ 27.79 20.44 3.77 1.06 14.68 26.83 19.97 2.48 2.25 19.36
CRAYON (ours) 21.97 25.87 5.34 2.20 20.85 21.52 25.29 3.73 4.86 32.24
CRAYON + RL 21.87 26.00 5.50 2.46 22.83 21.87 25.01 3.86 5.55 35.58

Table 2: Experimental results on Persona-Chat and DailyDialog datasets. The best scores are in bold. †: perplexity is very unstable due
to the sampling process. ∗: results obtained by running code released by their authors or our implementation. Our best model variants are
significantly better than all comparisons (p < 0.01, Welch’s t-test) on perplexity and BLEU, except for BLEU-2 under the system setting on
Persona-Chat. The Non-controllable and System Setting are comparable where only contexts are available during test time.

et al. 2019): the conditional training method which directly
incorporates control attributes into inputs. For CT, we
report the performance of two variants: CT-APPEND that
appends the attributes to the input contexts and CT-EMB
which concatenates the embeddings of control attributes
to the decoder’s input at every step. We apply the same
attributes as our model for controllable baselines.

We employ both system setting and oracle setting for con-
trollable models. Under the system setting, the attributes are
not given and need to be predicted by the model based on
contexts, and we focus on evaluating the response quality.
Under the oracle setting, the true attributes are provided, and
we mainly focus on evaluating the model controllability. The
training details are given in supplementary.

4.2 Automatic Evaluation
We adopt perplexity (PPL.) to evaluate response fluency and
BLEU-1/2 (Papineni et al. 2002) to evaluate relevance. For
diversity, we employ Distinct-1/2 (Dist.1/2) (Li et al. 2016a)
to calculate the ratio of distinct uni-grams or bi-grams. The
results are shown in Table 2.
Comparison with Non-controllable Baselines. Under the
system setting, where the same inputs (only contexts) are
leveraged, our model achieves remarkably lower perplexity
than all non-controllable baselines on both datasets. These
results indicate that our model is able to generate more fluent
responses. As for relevance, our model significantly outper-
forms the baselines in terms of BLEU-1 and BLEU-2.3 Fur-
thermore, our RL variant produces more diverse responses
with larger distinct-1/2. Although PER-CAVE achieves high
distinct scores, its perplexity and BLEU scores are very low,

3We cannot conduct significant test on Dist.1/2 since we com-
pute the inter-distinct on total generated words as implemented in
(Li et al. 2016a).
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Figure 4: Ablation results of our model variants.

indicating a low response quality. By contrast, our model can
achieve both high response quality and diversity. All these
improvements demonstrate that by incorporating important
control attributes, our model can produce more appropriate
and diverse responses.

Comparison with Controllable Baselines. Moreover, com-
pared to CT and GTMNES2S that directly incorporate at-
tributes into input contexts and rely on one single module
to deal with both stylistic constraints and semantic require-
ments altogether, our model surpasses these baselines to-
wards all aspects under both system and oracle settings. The
results prove the effectiveness of our model on disentan-
gling the complicated controllable generation under multi-
attribute constraints. Furthermore, after applying RL train-
ing, the distinct scores are improved, showing that introduc-
ing explicit training signals on attributes benefits the model
to generate more diverse responses. This is consistent with
our motivation to tackle the one-to-many mapping problem
via explicit control. Overall, the above results demonstrate
that our model can achieve better response quality and di-



Read. Coh. Rich. Overall.

SEQ2SEQ 3.13 3.10 2.85 3.14
PER-CVAE 2.74 2.54 2.62 2.77
CT-APPEND 2.76 2.59 2.69 2.81
CT-EMB 2.59 2.63 2.57 2.59
GTMNES2S 2.74 2.38 3.13 2.77
CRAYON (ours) 3.29 3.30∗ 3.20 3.41∗

CRAYON + RL 3.17 3.15 3.36∗ 3.38∗

Table 3: Human evaluation with scores on a scale of 1 to 5 (best).
∗: significantly better than all comparisons (p < 0.005, Welch’s
t-test). The Krippendorf’s α values for all aspects exceed 0.4, indi-
cating general consensus to intermediate agreement.

versity than controllable baselines.
Ablation Study on Model Variants. We further analyze
our model variants to quantify the contributions of various
components under the system setting. As shown in Fig-
ure 4, CRAYON achieves the best performance towards
both response quality and diversity. Meanwhile, removing
C-BOW loss (Lc-bow) and local style prediction loss (Ll-style)
leads to performance degradation. In particular, removing
local style prediction loss brings significant decreases to re-
sponse diversity. The results imply the effectiveness of these
two losses. Finally, we consider the variant without multi-
grained control, where we treat global attributes as local
ones with identical labels for all tokens, and the results also
drop. This result indicates that incorporating attributes in
different granularities indeed help the model to effectively
steer the generation process.

4.3 Human Evaluation
We also conduct human evaluation to analyze the response
quality. Concretely, we select 100 random samples from
Persona-Chat test set, and ask three proficient English speak-
ers to rate on a Likert scale of 1 to 5 (best) regarding read-
ability (Read.), coherence (Coh.), content richness (Rich.)
and overall quality (Overall.).4 As shown in Table 3, our
model variant achieves the highest scores on all aspects. Af-
ter applying the attribute consistency reward, the readability
and coherence slightly decrease. We find that introducing
RL training makes the responses sometimes contain gram-
matical errors, but meanwhile the model generates more di-
verse and informative responses with better content rich-
ness. Notably, CT-EMB and CT-APPEND produce low re-
sults. We hypothesize that directly adding all attributes to in-
puts brings complex disentanglement issues and the model
is hard to learn the correct relation between attributes and
responses.

4.4 Analysis on Model Controllability
Accuracy of Control. We study the control accuracy in Ta-
ble 4. Specifically, we compute the attribute values of each
generated response with the same classifiers as in data pre-
processing and compare the values with the true input at-
tributes. First, our model trained with ML objectives outper-
forms CT and GTMNES2S on both datasets. This shows

4Detailed guidelines are given in the supplementary.

Q-A. Len. Sent. Rel. Spe.

Persona-Chat
CT-APPEND 92.57 81.12 76.15 63.48 54.49
CT-EMB 96.44 80.69 74.59 63.74 58.78
GTMNES2S 97.15 70.16 74.90 67.58 62.43
CRAYON (ours) 98.32 85.21 75.09 69.99 64.46

w/o Ll-style 97.52 82.10 72.30 66.19 52.61
CRAYON + RL 98.73 85.31 84.28 73.87 75.10

DailyDialog
CT-APPEND 92.54 76.41 72.05 71.63 52.10
CT-EMB 91.78 81.69 75.92 73.68 56.76
GTMNES2S 93.88 67.38 72.98 74.38 60.94
CRAYON (ours) 96.48 88.35 76.62 76.59 58.19

w/o Ll-style 96.33 83.56 75.77 74.76 55.65
CRAYON + RL 98.17 90.29 82.17 79.65 67.40

Table 4: Control Accuracy (%) of each attribute.

Len. Rel. Spe. Sent. Q-A
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Figure 5: Contributions of each single control attributes.

that our multi-grained style specification layer can accu-
rately reflect the stylistic constraints and help to produce de-
sired responses that are conformable to the attributes. Sec-
ond, removing local style prediction loss leads to perfor-
mance decreases, indicating the effectiveness of this auxil-
iary task on strengthening the style specification. Third, the
observation of the normal accuracy on Specificity is consis-
tent with prior work (See et al. 2019). We speculate that
Specificity is a relatively implicit attribute, and the small-
scale training data is insufficient for the model to learn
the mapping between the attribute and response. Nonethe-
less, the results in Figure 5 empirically show that the model
can still produce high-quality responses with this attribute.
Fourth, after applying RL with attribute consistency re-
ward, the results of all attributes are improved, especially for
Specificity, proving that our model can generate responses
with better fidelity to the attributes by introducing explicit
supervision signals.

Ablation on Single Attribute. We study the contribution of
each attribute in Figure 5. We consider one single attribute
to control the response generation at each time, and present
the corresponding perplexity and distinct-2. As shown in the
left figure, among all attributes, Length and Question-asking
are effective on both datasets. While Sentiment is quite use-
ful on DailyDialog, it does not contribute much on Persona-
Chat. In the right figure, we can conclude that Specificity
is more relevant to the response diversity, while Length and
Response-relatedness are less relevant. This indicates that
introducing proper attributes is critical. In addition, com-
pared with the results in Table 2, incorporating all attributes
can significantly improve the model performance towards
both response fluency and diversity, further proving the im-



Context:
R1: How are you this evening ?
Response:
1 Q-A=False, Len.=1, Sent.=Negative, Rel.=1, Spe.=0

Generated: Tired. Watching a movie on the weekends .
2 Q-A=False, Len.=1, Sent.=Neutral, Rel.=0, Spe.=0

Generated: Not bad . Just listening to rap music , cooking some
pizza .
3 Q-A=True, Len.=2, Sent.=Positive, Rel.=0, Spe.=2

Generated: I am doing very well . Just finished eating sushi .
Where are you from ?

Context:
R1: Hey guess what ? I am a jewish boy and still enjoy jazz music.
R2: Cool ! I am jewish too ! I play pop music , i am the lead singer
of bb2 .
Response:
1 Q-A=False, Len.=1, Sent.=Positive, Rel.=1, Spe.=0

Generated: That is pretty cool . I love music too !
2 Q-A=False, Len.=2, Sent.=Positive, Rel.=1, Spe.= 2

Generated: Awesome ! I am a jazz singer . I love music and jazz
music mostly .

Context:
R1: Good evening , what are you doing tonight ?
R2: Hi, how are you ? I just got in from working on my car .
Response:
1 Q-A=False, Len.=1, Sent.=Positive, Rel.=0, Spe.=1

Generated: Great , i am doing great tonight . Enjoying some ro-
mance books .
2 Q-A=False, Len.=1, Sent.=Negative, Rel.=0, Spe.= 0

Generated: I am tired, getting ready to go .

Figure 6: Sample responses with corresponding attributes, gener-
ated by our model with RL on Persona-Chat test set. Words with
large specificity scores are in boldface and color-coded.

portance of introducing controls into dialogue generation.

4.5 Case Study
We show sample outputs of our model with the correspond-
ing attributes in Figure 7. Our model is able to generate
proper responses with desired attributes. Specifically, given
a negative sentiment, our model correctly generates “tired”,
while for the positive sentiment our model generates phrases
such as “very well” and “pretty cool”. Besides, when a
high specificity is given, our model produces response words
such as “sushi”, “jazz” and “romance”. With respect to
Question-asking, the model learns to correctly use “?”.
Overall, our model can properly reflect the stylistic con-
straints and generate responses conformable to the controls.
This proves the effectiveness of our model regarding con-
trollability by incorporating fine-grained controls into the
two-stage controlled decoder.

5 Related Work
Dialogue Generation. Neural response generation models
are mostly based on seq2seq framework (Sutskever, Vinyals,

and Le 2014; Li et al. 2016a). To improve the quality of re-
sponse and address problems such as generic and safe re-
sponse (Sutskever, Vinyals, and Le 2014; Mou et al. 2016),
many extensions under the encoder-decoder framework have
been proposed. For instance, maximum mutual information
objective (Li et al. 2016a) or diverse beam search (Mou et al.
2016) are utilized to address the generic response issue dur-
ing decoding. Besides, some work also tackles this prob-
lem during model training. For example, adversarial learn-
ing (Li et al. 2017a; Zhang et al. 2018c) or reinforcement
learning (Li et al. 2016b; Yao et al. 2016; Xu, Wu, and Wu
2018; Saleh et al. 2020) based methods could directly im-
prove the quality of responses. Some studies also adopt la-
tent variables to capture the response variation and control
the generation (Zhao, Zhao, and Eskenazi 2017; Gao et al.
2019a), yet these latent variables are difficult to explain and
hard to control the generation with specific attributes. Sankar
and Ravi (2019) leverage discrete attributes with reinforce-
ment learning to promote response diversity. However, RL
is only used for dialogue attribute prediction without direct
supervision on responses.

Controllable Generation. Our work is also in line with
controllable generation. Recent work incorporates control
attributes such as specificity (Takayama and Arase 2020),
topic (Baheti et al. 2018), dialogue acts (Xu, Wu, and Wu
2018), phrase (Wu et al. 2020), and style (Wang et al. 2017;
Gao et al. 2019b). Hedayatnia et al. (2020) use a dialogue
policy to control responses at the turn and sentence lev-
els with grounded knowledge. Xu et al. (2019) propose
a memory-enhanced seq2seq model with a multi-attribute
controlling mechanism. Gupta et al. (2020) control dialogue
generation based on the semantic frames of retrieved exem-
plars to improve coherency.

Conditional training (Keskar et al. 2019) and weighted
decoding (See et al. 2019) are commonly used for con-
trollable generation. However, these methods couple style
specification and response realization in a single module,
which makes it hard to deal with the complex disentangle-
ment introduced by multiple constraints. Our work is differ-
ent from the above methods in the following aspects: 1) We
divide control attributes into global and local ones to facil-
itate more flexible controls in different granularities; 2) We
adopt multi-grained style specification and response gener-
ation to address complicated disentanglement; 3) We design
an attribute consistency reward to introduce the direct train-
ing signals on control and promote response fidelity to at-
tributes.

6 Conclusion
In this paper, we have presented CRAYON, a controllable
dialogue generation model with a novel two-stage controlled
decoder and an attribute consistency reward to steer the gen-
eration process in a way of multi-grained controls. Both au-
tomatic and human evaluations indicate that our proposed
model can address the complicated disentanglement and
generate high-quality responses with better fidelity to con-
trols. In the future, we plan to extend our method to other
generation tasks and incorporate pre-trained models.
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Cho, K.; Van Merriënboer, B.; Bahdanau, D.; and Ben-
gio, Y. 2014a. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259.
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A Additional Experiment Details
Preprocessing. We conduct experiments on Persona-
Chat (Zhang et al. 2018b) and DailyDialog (Li et al. 2017b)
datasets. We follow the preprocessing as Bao et al. (2020).
The data statistics are summarized in Table 5. We further fil-
ter the samples with a reference length shorter than 3. Our
vocabulary size is 14,119 on Persona-Chat and 20,014 on
DailyDialog.

Dataset Train Val. Test

Persona-Chat 122,343 14,602 14,056
DailyDialog 69,107 6,458 6,128

Table 5: Statistics on the datasets for experiments.

Training Details. We implement our model using Open-
NMT (Klein et al. 2017). We use a two-layer bidirec-
tional GRU for both encoder and decoder with the 300-
dimensional hidden size (150 per direction). For Trans-
former, we apply a 4-layer encoder and decoder with 6 at-
tention heads and the dimension of 300. We initialize word
embeddings with GloVe (Pennington, Socher, and Manning
2014) and fine-tuned them during training. The dimension
of attribute embeddings is 300, which is randomly initial-
ized. The batch size is 64. We apply the Adam optimiza-
tion (Kingma and Ba 2014) with warm-up steps of 500 and
the maximal learning rate of 5e-4. We implement early stop-
ping based on the perplexity on validation set. Also we set
dropout with a retention probability of 0.9 to prevent over-
fitting. All parameters are tuned from the validation set. To
make the model more robust to attributes under system set-
ting, we apply schedule sampling during training: we use
gold control attributes with a probability of 80%, and use
predicted attributes from the predictor with a probability of
20%. During the RL stage, since only incorporating RL loss
leads to a degradation of response fluency, we apply a com-
bination of RL loss and NLL loss.

For PER-CAVE, we use their implementations.5 For
GTMNES2S, since the source code is not released, we re-
produced the model according to their paper. We apply the
same attributes as our model, and set the hidden size and
number of layers the same as our model.

All experiments are trained on NVIDIA Tesla V100
GPUs. For our model, it takes approximately 2 hours to con-
verge in the ML training stage, and 10 hours in the RL train-
ing stage. When selecting the model checkpoint, we choose
the one based on the validation perplexity. The perplexity
score on Persona-Chat validation set is 22.43 and on Daily-
Dialog is 20.33.

B Categorization of Attributes
We categorize Sentiment, Length and Question-asking as
global attributes, and Specificity and Response-relatedness
as local attributes based on the property whether the attribute
can be directly reflected on each token or it affects the gen-
eration from an overall perspective and cannot be directly

5https://github.com/vsharecodes/percvae

reflected on each token. In particular, we consider Specificity
as a local attribute since the specificity of the whole response
strongly depends on the specificity score of each word. Be-
sides, we consider Response-relatedness as a local attribute
because 1) the relatedness of response and context can be re-
flected on each response token (the sentence embeddings are
calculated as the weighted sum of word embeddings) and 2)
See et al. (2019) find that weighted decoding is more effec-
tive for response-relatedness, where they consider the simi-
larity between each response token and context as the decod-
ing feature. Thus, we incorporate the token-level relatedness
into local attribute prediction to bring a performance gain.

C Attribute Predictor
We design an attribute predictor to predict each attribute
given input context. This benefits our model to generate re-
sponses with proper attributes when they are not provided.
Particularly, inspired by Lian et al. (2019), we train the
predictor by reducing the prediction divergence between its
prior distribution and posterior distribution.
Prior Distribution. Taking the last context hidden state hx

N
as input, we define the prior distribution as follows:

P (zj |x) = softmax(MLPprior
j (hx

N )), (12)

where zj is the j-th attribute, and MLPprior
j (∗) denotes a

multi-layer feed-forward network for zj .
Posterior Attribute Distribution. Unlike the prior distribu-
tion solely based on input context, the calculation of the pos-
terior distribution involves both input context and response.
Specifically, we first use the same context encoder to learn
the semantic representation of the response, forming the re-
sponse hidden states {hy

t }Mt=1. Then, we define the posterior
distribution P ′(zj |x,y) as follows:

P ′(zj |x,y) = softmax(MLPpost
j ([hx

N ;hy
M ])), (13)

where [;] represents concatenation. Compared with the prior
distribution, the posterior one better fits the true distributions
since responses can also be utilized.

During training, we use gold control attributes with a
probability of 80%, and use predicted attributes from the
predictor with a probability of 20% as the inputs for the de-
coder. Since discrete control attributes are non-differentiable
for gradient backpropagation, we apply the Gumbel-Softmax
Reparameterization trick (Jang, Gu, and Poole 2017) to
sample control attributes.
Training Objective. To effectively train the attribute predic-
tor, we define a comprehensive training objective including
the attribute prediction loss (Lacc) and the prediction diver-
gence loss (Lkl):

Lattr = λ1Lacc + λ2Lkl, (14)

where λ∗ are hyper-parameters used to balance the prefer-
ence among the three losses. We set λ1 as 1.0 and λ2 as 0 in
the first 1,000 steps, and then change λ2 to 1.0.



Lacc are used to directly train the predictor. Formally, we
define the loss in the following way:

Lacc = − log
∑
j

P ′(zj |x,y)), (15)

where ez is the concatenation of all attribute embeddings.
Besides, Lkl is approximated as the Kullback-Leibler di-

vergence between the posterior distribution and the prior
one:

Lkl =
∑
j

KL(P ′(zj |x,y), P (zj |x)), (16)

where we use KL(∗) to denote the Kullback-Leibler diver-
gence function. During training, the model learns to enforce
the prior and posterior distributions to be as close as possi-
ble by minimizingLkl. Note that the attribute prediction loss
is beneficial for learning the posterior distribution of the at-
tribute predictor, which in turn helps the prior distribution to
approach the same distribution. Thus, our model can sample
attributes to generate desirable responses even without input
attributes.

D Human Evaluation Guideline
In our survey, each human annotator is presented with 100
samples given the persona and dialogue history. The annota-
tors are asked to evaluate 6 responses for every sample, on a
scale of 1 to 5 for the following aspects. 1 means the worst
and 5 means the best. To avoid bias, we anonymize the mod-
els and shuffle the outputs to the annotators. More details are
in Table 6.

• Readability: whether the response is fluent, complete,
grammatically correct and can be understood;

• Coherence: whether the response is relevant with the di-
alogue context and consistent with the dialogue history
or background knowledge;

• Content richness: whether the response is informative,
interesting and encourages you to continue the conversa-
tion;

• Overall quality: this is a general assessment that
whether you think it is a good response or not.

E Sample Output
We further include sample outputs of our model on Persona-
Chat test set from Figure 7 and Table 7 to Table 10.



Readability:

1 Not readable, contains fragments, missing components, or serious grammar errors
3 Contains relatively minor grammatical errors, not very fluent, but understandable
5 Correct Grammar, very fluent and complete

Coherence:

1 Not relevant with the contexts, or inconsistent with dialogue history or background
knowledge

3 Relevant to the contexts, but with minor conflicts to the dialogue history or background
knowledge

5 Completely coherent and relevant to the dialogue contexts and background knowl-
edge.

Content richness:

1 Very generic or boring. Do not want to continue this conversation
3 Contains some information, but somewhat not interesting or informative
5 Interesting, informative and you want to continue the conversation.

Overall quality:

1 Not a valid response
3 Can be a response, but contains some language errors or not informative
5 A good response.

Table 6: Explanations on human evaluation aspect scales.



Context:
R1: Hello there hows it going ?
R2: Hi, i am Joanna. How are you tonight ?
R1: Hey i am Brianna, i am okay .
Response:
1 Q-A=False, Len.=0, Sent.=Positive, Rel.=1, Spe.=0
Generated: That is great !
2 Q-A=False, Len.=1, Sent.=Positive, Rel.=1, Spe.=0
Generated: Oh that is great ! What kind of music do you enjoy ?
4 Q-A=False, Len.=2, Sent.=Positive, Rel.=1, Spe.=0
Generated: Great . Where are you from ? i live in South Carolina . you ever been to South Carolina ?

Context:
R1: How is it going ? What are you up to ?
R2: Good , just reading a book about traveling .
Response:
1 Q-A=True, Len.=2, Sent.=Positive, Rel.=0, Spe.=0
Generated: Nice ! I love reading book . How many books are you reading ?
2 Q-A=True, Len.=2, Sent.=Positive, Rel.=1, Spe.= 2
Generated: That is good . I’m always reading about the bible .

Context:
R1: Hi , how are you today ?
Response:
1 Q-A=False, Len.=1, Sent.=Positive, Rel.=1, Spe.=2
Generated: I am good . Just listening to nirvana music .
2 Q-A=False, Len.=1, Sent.=Neutral, Rel.=1, Spe.=2
Generated: Just fine and eating some pizza .
2 Q-A=False, Len.=1, Sent.=Negative, Rel.=1, Spe.=2
Generated: Tired . My job is a musician .

Context:
R1: Hi ! How are you doing today ?
R2: I am wonderful thank you . I am listening to classical music .
Response:
1 Q-A=False, Len.=1, Sent.=Neutral, Rel.=0, Spe.=1
Generated: I am a big singer . I am a violent person .
2 Q-A=False, Len.=1, Sent.=Neutral, Rel.=2, Spe.=1
Generated: My favorite genre of music ! My mom loves classical music !

Figure 7: Sample responses with different attributes, generated by our model with RL on Persona-Chat test set.



Persona
i do not drive because i live in new york
i like jazz music
my favorite tv show is the office
i do not eat anything sweet .

Context
B: hello , how are you tonight ? are you watching the office
A: hi ! i am well , thanks . i actually just got back from a hike .
B: that sounds wonderful , i live in the city and do not have hiking trails .
A: i am in ohio where there are lots of wooded trails .
B: ohio is lovely , we went hiked blue hen and buttermilk falls once .
A: yes , very nice . my 2 sons love to hike buttermilk falls .
B: that hill though , lol . do you like sweets ? i do not .
A: i try to not eat many sweets to set a good example for my boys .
B: i do not like them that much . do you have any hobbies ?
A: i am single mom so other than hiking , a lot of running my boys around to sports

Per-CVAE
i ’ m a bit of a vegan . i can not wait for that .

Seq2Seq
i enjoy running too .

CT-append
that is good . i’m on road trips .

CT-emb
oh cool . i love to hike . i have only 2 kids , but i’m a UNK too !

GTMNES2S
that is good . i have long hair and dyed my hair purple !

Transformer
it is a great place to go

Ours
that is fun . i like to learn about history and watching tv .

Ours+RL
that’s a great hobby , i also enjoy listening to music while playing

Table 7: Sample outputs on persona dataset.



Persona
i like to play racquetball
i enjoy oldies music
i am looking forward to retiring in five years
i love trying barbeque restaurants
i am an administrative assistant

Context
B: good morning ! where are you from ?
A: from texas . a large house ranch was where i was raised .
B: ah , good old texas ! best barbecue i ever had in my life was in texas .
A: do you like horses ? i love working with horses .
B: i have never tried but i am retiring in 5 years so maybe i will .
A: what is your favorite musician ? mine is john denver .
B: chuck berry is the best ever ! what kind of hobbies do you do ?
A: one of my hobbies is working out every day . you ?

Per-CVAE
whats your favorite season ? mine and me .

Seq2Seq
i like to cook barbeque and i love to eat barbeque .

CT-append
i love to take photos , and you ?

CT-emb
i have to to my house , UNK . and go to UNK

GTMNES2S
i play piano and dance . how often do you play with your aww ? that’s cool . i like a little than i do .

Transformer
i am in california .

Ours
my favorite hobby is racquetball . and i try to go to the gym .

Ours+RL
i enjoy playing racquetball and playing volleyball .

Table 8: Sample outputs on persona dataset.



Persona
i have been at the same job for a years
i do not get along with my dad
i am a nurse
i hate cats

Context
B: hi ! i am headed to work at the hospital this morning . you ?
A: just relaxing . i work retail , so not as exciting as the hospital .
B: i have been a nurse at this hospital for 35 years so not too exciting
A: i bet you have some crazy stories though .
B: the worst was when i treated a lady dressed like a cat . cats repulse me
A: i am not a cat lover either . i would rather deal with dogs .
B: my dad has 5 dogs and i do not enjoy him so dogs bother me too
A: i went to a friends wedding last week where they used their dog as a ring barer
B: haha that is silly . at least it was not a disgusting cat
A: very true . do you have a favorite band you like to listen to while working ?

Per-CVAE
i love the musical troupe

Seq2Seq
i like listening to the radio

CT-append
i like to listen to my nephew . we are a handful .

CT-emb
i love to dance . i have a band , its a UNK , the UNK

GTMNES2S
i like to listen to music when i play video games , i do have a couple of them .

Transformer
oh nice . i hope to find a family soon .

Ours
not really . i listen to music and love to listen to nickelback while i take it

Ours+RL
not really much but i like jazz . have you ever been to a concert ?

Table 9: Sample outputs on persona dataset.



Persona
i was arrested for stealing
i want children badly but not right time in my life
my parents were always gone when i was growing up
i want to be a fashion designer
my best friend took my boyfriend in high school

Context
B: hi how are you ? i am in jail right now .
A: i am good . . . not in jail , lol .
B: i stole a water bottle from the store and ended up here .
A: oh . i am a managerial consultant in wisconsin .
B: wow ! i have always wanted to be a fashion designer .
A: maybe once you get out of jail you can be .
B: yeah but my ex boyfriend from high school is dating my best friend now .
A: oh that stinks . i am single .
B: i am too , i think it is my parents fault
A: what type of music do you listen to ?
B: i really like pop . you ?
A: i like rock and pop . metallica is my favorite .

Per-CVAE
i guess . i like to be taller lol

Seq2Seq
i like all kinds of music . what kind of music do you like ?

CT-append
i like rap i listen to pop too . i listen to hip hop

CT-emb
i like rock . i am actually UNK to do , but i have a couple of my boyfriend at school .

GTMNES2S
i like simple that is not all i do sometimes , but i never bet i could go fishing !

Transformer
that is very true !

Ours
i like metallica . they are my favorite .

Ours+RL
i love metallica ! i even listen to them every day .

Table 10: Sample outputs on persona dataset.


